
Why kids still need to learn
to code in the age of AI

A position paper from the Raspberry Pi Foundation

Philip Colligan, Mark Griffiths, Veronica Cucuiat

June 2025

1

Why kids still need to learn to code in the age of AI

0. Why do I need to learn this?

It’s a question that every teacher needs to be ready to answer. Learning takes time and
effort, and, given an already packed curriculum and no shortage of ideas about what else
should be added, we need to justify everything that we expect young people to study.

Until recently, the rationale for learning to code seemed clear: it was a pathway to a well-
paid job. Tech companies have long bemoaned a shortage of coding skills and there is
good evidence that young people who study computer science earn more.¹

And it wasn’t just about access to jobs. Learning to code empowers young people to use
technology to solve problems that they care about, to express themselves creatively, and to
build businesses that could change the world.

For the past decade, the challenge facing education systems wasn’t whether they should
be equipping young people with the ability to code, it was how they should go about it.

So has something changed?

The past couple of years have seen huge advances in artificial intelligence (AI), machine
learning, robotics, and automation that are already reshaping the way we live, work, learn,
and interact. No one really knows how far-reaching these changes will be, but it seems
plausible that we are living through one of the most significant waves of technological
innovation in history.

One of the fastest developing applications of generative AI has been systems that can
generate code. Trained on huge repositories of human-generated code, tools like GitHub’s
Copilot and Replit’s Ghostwriter can now generate increasingly complex code from natural
language prompts, ushering in a new era of “vibe-coding”.

This is leading many to question whether young people should bother to learn to code and
for some to even predict the end of programming as we know it.²

So what should we say to the ten year-old who is invited to put together some coding
blocks in a computer science class when she asks “Why do I need to learn this?”

In this paper, we put forward five arguments for why we think that kids still need to learn to
code in the age of AI.

We argue that even in a world where AI can generate code, we will need skilled human
programmers who can think critically, solve problems, and make ethical decisions. Young
people need to learn to code because it is the most effective way for them to develop the
mental models and fluency to become skilled human programmers.

We argue that learning to code will open up more economic opportunities for young
people as the advances in technology expand the range of problems that can be solved
through computation. We also make the case for coding as a modern form of literacy
that gives young people agency in a world mediated by digital technologies.

And finally, we explain why those who learn to code will be the ones who ultimately
shape the future that we all live in and therefore we should open those opportunities to
as wide a group as possible.

2

Why kids still need to learn to code in the age of AI

We do so with humility and in full recognition that we are living through a period of rapid
technological change, with all the uncertainty that involves.

But, right now, based on all of the information that we have available, we think that
learning to code remains a powerful way of equipping young people with the knowledge,
skills, and mindsets to shape the world that they live in.

1. We need humans who are skilled programmers

One of the great things about natural language is that it can cope with ambiguity. We
tend to understand each other even when we are a bit loose with our words. So it’s
not surprising that “code” has often been used as a shorthand for the whole field of
computer science or that we say “coding” when we really mean “programming”.

We should start with some definitions.

Computer science is the study of how computers work and how we can use them to
solve problems. It involves computational thinking and the principles that underpin
computation, from how data is represented and processed, to how algorithms are
designed and analysed. It also includes topics like networking, web technologies, cyber
security, and the social and ethical implications of computing technologies. It is a broad
and wide ranging subject that continues to evolve.

Programming is perhaps best understood as the process of formulating a problem in a
way that it can be solved by a computer. It sounds simple, but in reality it is a complex
and creative process through which human intent is translated into executable computer
programs. It is a highly skilled craft that some even describe as a form of art.³

Coding is the way that humans give instructions to computers. It is a crucial part of
programming, but they aren’t the same thing. Programming also involves analysing and
understanding problems, identifying and evaluating solutions, designing algorithms,
testing and debugging, and much more.

The methods through which humans give instructions to computers have changed
dramatically since the first programmers connected switches and wrangled punch cards.
Successive waves of innovations have automated different parts of the process, making
it easier for humans to get a computer to do their bidding. Compilers, programming
languages, operating systems, and libraries are all innovations that use abstraction and
automation to make the act of coding easier and quicker.

The latest wave of AI technologies have made it possible for a human to describe what
they want to a large language model (LLM) and have their natural language instructions
translated into code in the programming language of their choice.

Is this new wave of AI-powered coding tools simply the latest chapter in the history of
automation and abstraction? Or has something more fundamental changed?

For sure, there is compelling evidence that these AI systems can dramatically increase
the productivity of a skilled human programmer. This seems to be happening in two main
ways: by automating routine tasks, helping them achieve what they want to do quicker;
and by helping them explore options, suggesting different ways to solve a particular
problem that the programmer can evaluate and select.4

3

Why kids still need to learn to code in the age of AI

While the ability of these AI systems to generate code is genuinely impressive (and
improving all the time), they haven’t automated the process — or art — of programming.
The evidence suggests that skilled human programmers will continue to have a critical
role to play in translating messy real-world problems into a form that can be solved
through computation.5

Human programmers are needed to provide effective prompts to AI systems; to critically
evaluate the suggestions that they produce6; and to use ‘systems thinking’ to understand how
a code component fits into the wider software architecture that exists or which is being built.7

LLMs are probabilistic systems designed to generate statistically acceptable outputs.
There is no guarantee of accuracy or relevance, and generating more code faster isn’t
necessarily a good thing. One study analysed 211 million lines of code that had been
changed by AI code assistants and identified “multiple signs of eroding code quality”
and concluded that developers should “emphasize their still-uniquely human ability to
‘simplify’ and ‘consolidate’ code they understand”.8

While AI-powered coding tools lower the barrier to anyone being able to generate code, it
still takes a skilled programmer to know what good quality, safe, and ethical code looks like.

This expertise is important when it comes to applying critical thinking to working with a
generative AI system. In one study, knowledge workers with higher confidence in their
ability to complete the task without generative AI tools were more likely to apply critical
thinking skills when using these tools and evaluating their outputs.9

It’s also worth remembering that AI systems are trained on repositories of existing code
and “will not be able to generate programs that deal with new machine architectures, new
programming frameworks, or solve new real-work problems”.10

For all of those reasons, we will still need humans who are skilled programmers.

2. Learning to code is an essential part of learning
to program

In an era of AI-generated code, it’s tempting to assume that the hard work of actually writing
code is becoming obsolete. Surely we can just teach young people how to vibe code?

The reality is that coding is still the most effective way we know for young people to develop
the computational thinking skills that enable them to become an effective programmer.

The fact that code (either graphical or text-based) does not use natural language as an
input is arguably a feature and not a bug. The friction introduced in the conversion of
human reasoning into a rigid expression of logic is where the learning and development
of computational thinking occurs.

An analogy helps make the point here. For good reasons we ask students to write
creative stories — even though generative AI can produce compelling narratives —
because the act of writing builds literacy. It helps learners engage with language,
understand sentence construction, experiment with style, and develop techniques like
characterisation and dialogue. These skills can’t be fully absorbed by observing a finished
product, they emerge through the process of doing.

4

Why kids still need to learn to code in the age of AI

In the same way, coding is the hands-on practice that allows young people to internalise
programming concepts. It enables them to try things out, see what works, and observe
the results of their thinking.

Through writing code, a young person builds mental models that allow them to better
understand how computers work, their potential, and their constraints.11 This includes
developing an understanding of what types of problems are amenable to computational
approaches and how to translate a messy real-world problem into precise computational
components. They learn how to read code and critically evaluate it, enabling them to
improve both their own and other people’s code, including code produced by an AI system.

This reflects the broader body of research on how expertise is developed. For any skill,
the process of learning is gradual, with learners acquiring new information, which is
then connected and organised into schemas or structured mental models that allow for
increasingly sophisticated understanding and application.12

In the context of coding, a beginner might first encounter isolated ideas like variables,
loops, or conditionals. Over time, with support and repetition, these concepts become
connected. Learners might begin to understand how to perform calculations on a list,
structure a loop to automate a task, and use conditional logic to guide a program’s
behaviour. Eventually, they can apply these mental models to solve real-world problems
like writing a program to calculate payroll after a tax change.

Crucially, this progression requires deliberate focus and cognitive effort. In terms of
learning to code, this includes reading, modifying, writing, and explaining code, and
testing it for errors. These activities are what help learners move knowledge from
short-term to long-term memory, building the fluency and confidence that define
genuine programming expertise. Without these experiences, a deep understanding of
programming simply doesn’t form.

Alongside that, there is clearly huge potential for AI technologies to transform teaching
and learning across all subjects and figuring out effective pedagogical strategies for
integrating AI is one of the most important areas of innovation in modern education.
There’s also an important role for schools in exposing young people to the real-world
applications of AI technologies and how they are changing the world, and this should
include the tools that are helping programmers write code quicker.13

But our job as educators isn’t to teach young people to use the tools employed by industry
today. The challenge (and opportunity) is how to integrate AI technologies into teaching and
learning while ensuring that young people are still developing the foundational knowledge
and skills that will enable them to thrive in a world where AI is ubiquitous.

That is why learning to code remains an essential part of learning to program.

3. Learning to code will open up even more opportunities
in the age of AI

There’s no doubt that AI will reshape the labour market. From transport to the creative
industries and professional services, we are already witnessing the early impacts of AI-
fuelled automation (replacing tasks) and augmentation (enhancing human capability)
across the economy. Programming is no exception.

5

Why kids still need to learn to code in the age of AI

So what happens if AI is used to generate more and more of the code that humans used
to write? Will we just need far fewer programmers?

History suggests not. One of the consistent lessons from previous waves of technology-
driven change is that, as the cost of a technology falls, demand for it increases.14

As we have already observed, successive waves of innovations have made it easier and
more productive for humans to give instructions to computers (compilers, programming
languages, operating systems, etc.). By dramatically lowering both barriers and costs, these
innovations made it easier to build software, leading to many more problems being solved
through computation, spawning whole new industries and economic opportunities.15

Generative AI is likely to follow the same pattern. It will undoubtedly change how
code is written, but it will also increase the reach of programming (and computational
approaches) across the economy and into new domains, creating demand for humans
who are skilled programmers.

This is reflected in current labour market predictions. While some lower-level or routine
coding roles will decline, according to the U.S. Bureau of Labor Statistics, employment is
projected to grow by 18% in software development, 33% in information security, and 36%
in data science, between 2023 and 2033.16

We’re already seeing a greater need for people who can combine programming with
domain-specific skills. In the life sciences, innovations in personalisation and co-
management of health are increasingly fuelled by wearable devices and huge amounts of
data.17 In modern agriculture, farmers are integrating data captured by sensors, drones,
and satellites to optimise crop yields, requiring them to blend traditional knowledge
with the ability to interact with complex digital systems.18 In the social sciences and
humanities, computational methods are enabling new kinds of inquiry, from large-scale
textual analysis to social network modelling.19

We can’t predict all the roles that will exist in the future: famously, 60% of the jobs in the US
economy in 2018 did not exist in 1940.20 But we know that digital technologies are becoming
more important across every sector of the economy and AI is accelerating that trend.

To ensure young people can access the opportunities these changes will create, they
need a foundational understanding of computer science and programming. That is why
the OECD’s most recent international assessment of what 15-year-olds know and can do
is focused on “students’ capacity to engage in an iterative process of knowledge building
and problem solving using computational tools”.21

Coding is no longer just for software engineers, it’s becoming a core skill that enables
people to work effectively and think critically in a world shaped by intelligent machines. As
a recent report on human skills for an AI age puts it, young people should aim to develop
“the dual capabilities of humans and AI, working together and with humans in the driving
seat, rather than a mutually diminishing duel between ourselves and machines”.22

6

Why kids still need to learn to code in the age of AI

4. Coding is a literacy that helps young people have
agency in a digital world

Just as reading and writing unlocks opportunity, creativity, and understanding, coding
gives young people a new way to express themselves, to learn, and to make sense of the
world. That is why coding and programming are increasingly recognised as a modern
form of literacy, essential whether or not it is a central part of your working life.23

Programming allows learners to create with technology, not just consume it. Whether
they’re designing a game, building an animation, or automating a task, they’re not just
following instructions, they are bringing their own ideas into the world. This ability to
shape the digital world is a powerful form of self-expression and builds confidence that
technology is something they can control.24

Coding supports learning across the curriculum. It provides a concrete, interactive way
to explore abstract ideas, making them more engaging and easier to understand. It
allows students to model complex systems, test hypotheses, and interact with data in
meaningful ways. From algebra to science and poetry, providing students with the ability
to program enables them to “learn about everything else”.25

This broader view of the role of learning to code — that it isn’t just about preparing young
people for work — has also been shown to increase participation, making computer
science more relevant and accessible to a wider range of young people.

But perhaps most importantly, learning to code is about power.

In a world increasingly mediated by software, algorithms, and automated decision-
making, young people who don’t understand or interrogate these systems are at a
disadvantage. They lack the conceptual framework to ask questions like: What data is
being used? What assumptions underpin the model? Can the outcome be contested?

Coding provides the foundation for that understanding, fostering a kind of epistemic
agency: the ability to ask how and why a system does what it does. Even a basic
understanding of conditionals, loops, and data structures enables learners to see
software as constructed and fallible. They are more likely to question a decision made by
an AI system, to demand transparency, and to advocate for their rights.

As AI interfaces become more capable of taking natural language instructions, it
is tempting to believe that understanding what is happening inside the black box is
unnecessary, but that is a dangerous fallacy. The more intuitive the interface, the easier
it is to mistake automation for objectivity or accuracy.

Providing young people with a solid grounding in computational literacy developed through
coding, helps ensure that they have agency. Without it, they risk being manipulated by
systems they don’t understand. As Rushkoff said: “Program, or be programmed”.26

7

Why kids still need to learn to code in the age of AI

5. The kids who learn to code will shape the future

The idea that “kids don’t need to learn to code” carries the real and present danger that we
will consolidate the power to shape the world into the hands of an even smaller and less
representative group.

Since the earliest days of computing, programming has been championed by educators
and computer scientists as a democratising force — empowering anyone to become
critically engaged citizens and effective contributors to a digital society.27 The reality is
that access to the opportunities to learn about computer science, programming, and
coding has remained deeply unequal, both within and between countries.28

That has helped create a technology sector that doesn’t reflect the broad diversity of human
backgrounds, perspectives, and experiences. And we are all living with the consequences.

While talent is everywhere, the opportunities to develop and apply it are not. Industry and
society are missing out on the creativity and entrepreneurialism of significant portions of
the population.

Teams with diverse perspectives are more likely to create inclusive designs, identify
biases, and build solutions that serve a broad range of users. From facial recognition
algorithms to hiring platforms and health tools, we’ve already seen the consequences of
design decisions made without broad participation.

The unprecedented levels of wealth that can accrue to individuals and organisations in
the technology sector create powerful second- and third-order effects. A small group of
individuals gets to decide where to deploy the capital they have built: which businesses
they invest in, which philanthropic causes they fund, and which political campaigns they
turbo charge with donations.

That’s why the question of who gets to learn to code is so consequential, for everyone.

6. The work we need to do

The good news is that we have made real progress. Over the past decade and more, a
global movement of educators, non-profits, philanthropists, businesses, and individuals
have been advocating for change and working with policy makers, school systems, and
teachers to make it happen.

It is hard work. Across the globe, education systems are under extraordinary pressure.
Still recovering from the impact of the COVID pandemic, they are being asked to do more
with fewer resources. At the same time, they are expected to deliver the knowledge,
skills, and values that will equip the next generation for a world of constant technological,
economic, and environmental change.

Time and again we ask teachers to teach a subject that they didn’t study themselves
and we almost always fail to give them the time and investment in their professional
development that they need to succeed.

8

Why kids still need to learn to code in the age of AI

The risk of the idea that “AI will do the coding for us” is that it suggests that policy
makers, school system leaders, and funders should step back from the hard work at just
the moment when we need to redouble our efforts.

For all of the reasons we have set out in this paper, we need to challenge the false
narrative that AI is removing the need for kids to learn to code. Instead we need to:

• Define a broad and diverse computer science curriculum that embraces AI, but which
prioritises the foundational knowledge and skills that will enable young people to thrive
in a fast-changing world

• Reimagine computer science as both a standalone subject in its own right and
a cross-curricular and interdisciplinary endeavour, integrated into the sciences,
mathematics, language, arts, and humanities

• Create more opportunities for hands-on and creative learning, empowering young
people to use digital technologies to bring their ideas into the world, building their
confidence and agency

• Invest in teachers with high-quality curriculum and classroom resources that are
grounded in research and effective pedagogy, and give them the time and support for
ongoing professional development

• Mobilise governments, companies, foundations, and philanthropists to increase
investment in the programs that ensure that every young person has the opportunity to
learn to code

The Raspberry Pi Foundation was founded in 2008 with the purpose to democratise
computing, so that every young person could realise their full potential through the power
of digital technologies. As we step into the age of AI, that mission feels more relevant and
urgent than ever.

9

Why kids still need to learn to code in the age of AI

References

¹ Liu, J., Conrad, C., & Blazar, D. (2024).
Computer science for all? The impact of high
school computer science courses on college
majors and earnings (EdWorkingPaper No. 24-
904). Annenberg Institute at Brown University.
https://doi.org/10.26300/k0w5-pg15

² Welsh, M. (2022). The end of programming.
Communications of the ACM, 66(1), 34–35.
https://doi.org/10.1145/3570220

³ Knuth, D. E. (1974). Computer programming
as an art. Communications of the ACM, 17(12),
667–673. https://www.cs.tufts.edu/~nr/cs257/
archive/don-knuth/as-an-art.pdf

4 Barke, S., James, M. B., & Polikarpova, N.
(2023). Grounded Copilot: How programmers
interact with code-generating models.
Proceedings of the ACM on Programming
Languages, 7(OOPSLA1), Article 78, 1–27.
https://doi.org/10.1145/3586030

5 O’Reilly, T. (2025). The End of Programming
as We Know It. O’Reilly Radar. https://www.
oreilly.com/radar/the-end-of-programming-as-
we-know-it/

6 Karaci Deniz, B., Gnanasambandam, C.,
Harrysson, M., Hussin, A., & Srivastava, S.
(2023). Unleashing developer productivity with
generative AI. McKinsey & Company. https://
www.mckinsey.com/capabilities/mckinsey-
digital/our-insights/unleashing-developer-
productivity-with-generative-ai

7 Du, X., Liu, M., Wang, K., Wang, H., Liu, J.,
Chen, Y., Feng, J., Sha, C., Peng, X., & Lou, Y.
(2024). Evaluating large language models in
class-level code generation. In Proceedings
of the 2024 IEEE/ACM 46th International
Conference on Software Engineering
(ICSE ’24) (pp. 1–13). ACM. https://doi.
org/10.1145/3597503.3639219

8 GitClear. (2025). AI Copilot code quality: 2025
look back at 12 months of data.

9 Lee, H.-P. (H.), Sarkar, A., Tankelevitch, L.,
Drosos, I., Rintel, S., Banks, R., & Wilson,
N. (2025). The impact of generative AI on
critical thinking: Self-reported reductions
in cognitive effort and confidence effects
from a survey of knowledge workers. In CHI
Conference on Human Factors in Computing
Systems (CHI ’25) (pp. 1–23). Association
for Computing Machinery. https://doi.
org/10.1145/3706598.3713778

10 Yellin, D. (2023). The premature obituary
of programming: Why deep learning will not
replace programming. Communications of
the ACM, 66(2), 41–44. https://cacm.acm.
org/opinion/the-premature-obituary-of-
programming/
11 Kim, D. Y. J. (2023). Redefining computer
science education: Code-centric to natural
language programming with AI-based no-code
platforms (arXiv No. 2308.13539). arXiv.
https://arxiv.org/abs/2308.13539
12 Hattie, J., & Yates, G. C. R. (2014). Visible
learning and the science of how we learn.
Routledge.
13 Denny, P., Prather, J., Becker, B. A., Finnie-
Ansley, J., Hellas, A., Leinonen, J., Luxton-
Reilly, A., Reeves, B. N., Santos, E. A., & Sarsa,
S. (2024). Computing education in the era of
generative AI. Communications of the ACM,
67(2), 56–67. https://cacm.acm.org/research/
computing-education-in-the-era-of-generative-ai/
14 Allglen. (2025). Jevons paradox: Why junior
developers shouldn’t fear AI. Stackademic.
https://blog.stackademic.com/jevons-
paradox-why-junior-developers-shouldnt-fear-
ai-b7daf86c5590
15 Cihon, P., & Demirer, M. (2023). How AI-
powered software development may affect
labor markets. Brookings Institution. https://
www.brookings.edu/articles/how-ai-powered-
software-development-may-affect-labor-
markets/
16 U.S. Bureau of Labor Statistics. (2023). Fastest
growing occupations. https://www.bls.gov/emp/
tables/fastest-growing-occupations.htm
17 UK BioIndustry Association. (2022). Life
Sciences 2030 Skills Strategy https://www.
bioindustry.org/static/uploaded/3acc684d-
f590-4e80-ab90472b1d96dee7.pdf
18 Trendov, N. M., Varas, S. & Zeng, M. (2019).
Digital technologies in agriculture and rural
areas – Status report. Rome. Licence: cc by-
nc-sa 3.0 igo.
19 University College London. (n.d.). UCL
Centre for Digital Humanities. https://www.ucl.
ac.uk/digital-humanities/
20 Autor, D., Chin, C., Salomons, A., &
Seegmiller, B. (2022). New frontiers: The origins
and content of new work, 1940–2018. MIT
Department of Economics. https://economics.
mit.edu/sites/default/files/2022-11/ACSS-
NewFrontiers-20220814.pdf

21 Organisation for Economic Co-operation and
Development. (2024). PISA 2025 learning in the
digital world assessment framework: Second
draft. OECD Publishing. https://www.oecd.
org/content/dam/oecd/en/topics/policy-sub-
issues/learning-in-the-digital-world/PISA%20
2025%20Learning%20in%20the%20Digital%20
World%20Assessment%20Framework%20
-%20Second%20Draft.pdf
22 Chatfield, T. (2025). Human skills for an AI
age: How today’s business schools can develop
tomorrow’s leaders (White paper). Sage.
https://doi.org/10.4135/wp254070
23 Vee, A. (2017). Coding literacy: How
computer programming is changing writing.
MIT Press.
24 Kafai, Y. B., & Burke, Q. (2014). Connected
code: Why children need to learn programming.
MIT Press. https://doi.org/10.7551/
mitpress/9992.001.0001
25 Guzdial, M. (2022). Providing students with
computational literacy for learning about
everything. In S.-C. Kong & H. Abelson (Eds.),
Computational thinking education in K–12:
Artificial intelligence literacy and physical
computing (pp. 29–48). MIT Press. https://doi.
org/10.7551/mitpress/13375.003.0005
26 Rushkoff, D. (2010). Program or Be
Programmed: Ten Commands for a Digital Age.
OR Books.
27 Vogel, S., Santo, R., & Ching, D. (2017).
Visions of computer science education:
Unpacking arguments for and projected
impacts of CS4All initiatives. In Proceedings
of the 2017 ACM SIGCSE Technical
Symposium on Computer Science Education
(pp. 609–614). ACM. https://dl.acm.org/
doi/10.1145/3017680.3017755
28 Denner, J., & Campe, S. (2023). Equity and
inclusion in computer science education:
Research on challenges and opportunities. In
S. Sentance, E. Barendsen, & C. Schulte (Eds.),
Computer science education: Perspectives
on teaching and learning in school (pp.
85–100). Bloomsbury Academic. https://doi.
org/10.5040/9781350296947.ch-008

Why kids still need to learn to code in the age of AI © 2025 by the Raspberry Pi
Foundation is licensed under CC BY-NC-ND 4.0. To view a copy of this license,
visit https://creativecommons.org/licenses/by-nc-nd/4.0/.

Colligan, P., Griffiths, M., Cucuiat, V. (2025) Why kids still need to learn to code in the age of AI.
Raspberry Pi Foundation.

https://doi.org/10.26300/k0w5-pg15
https://doi.org/10.1145/3570220
https://www.cs.tufts.edu/~nr/cs257/archive/don-knuth/as-an-art.pdf
https://www.cs.tufts.edu/~nr/cs257/archive/don-knuth/as-an-art.pdf
https://doi.org/10.1145/3586030
https://www.oreilly.com/radar/the-end-of-programming-as-we-know-it/
https://www.oreilly.com/radar/the-end-of-programming-as-we-know-it/
https://www.oreilly.com/radar/the-end-of-programming-as-we-know-it/
https://www.mckinsey.com/capabilities/mckinsey-digital/our-insights/unleashing-developer-productivity-with-generative-ai
https://www.mckinsey.com/capabilities/mckinsey-digital/our-insights/unleashing-developer-productivity-with-generative-ai
https://www.mckinsey.com/capabilities/mckinsey-digital/our-insights/unleashing-developer-productivity-with-generative-ai
https://www.mckinsey.com/capabilities/mckinsey-digital/our-insights/unleashing-developer-productivity-with-generative-ai
https://doi.org/10.1145/3597503.3639219
https://doi.org/10.1145/3597503.3639219
https://doi.org/10.1145/3706598.3713778
https://doi.org/10.1145/3706598.3713778
https://cacm.acm.org/opinion/the-premature-obituary-of-programming/
https://cacm.acm.org/opinion/the-premature-obituary-of-programming/
https://cacm.acm.org/opinion/the-premature-obituary-of-programming/
https://arxiv.org/abs/2308.13539
https://cacm.acm.org/research/computing-education-in-the-era-of-generative-ai/
https://cacm.acm.org/research/computing-education-in-the-era-of-generative-ai/
https://blog.stackademic.com/jevons-paradox-why-junior-developers-shouldnt-fear-ai-b7daf86c5590
https://blog.stackademic.com/jevons-paradox-why-junior-developers-shouldnt-fear-ai-b7daf86c5590
https://blog.stackademic.com/jevons-paradox-why-junior-developers-shouldnt-fear-ai-b7daf86c5590
https://www.brookings.edu/articles/how-ai-powered-software-development-may-affect-labor-markets/
https://www.brookings.edu/articles/how-ai-powered-software-development-may-affect-labor-markets/
https://www.brookings.edu/articles/how-ai-powered-software-development-may-affect-labor-markets/
https://www.brookings.edu/articles/how-ai-powered-software-development-may-affect-labor-markets/
https://www.bls.gov/emp/tables/fastest-growing-occupations.htm
https://www.bls.gov/emp/tables/fastest-growing-occupations.htm
https://www.bioindustry.org/static/uploaded/3acc684d-f590-4e80-ab90472b1d96dee7.pdf
https://www.bioindustry.org/static/uploaded/3acc684d-f590-4e80-ab90472b1d96dee7.pdf
https://www.bioindustry.org/static/uploaded/3acc684d-f590-4e80-ab90472b1d96dee7.pdf
https://www.ucl.ac.uk/digital-humanities/
https://www.ucl.ac.uk/digital-humanities/
https://economics.mit.edu/sites/default/files/2022-11/ACSS-NewFrontiers-20220814.pdf
https://economics.mit.edu/sites/default/files/2022-11/ACSS-NewFrontiers-20220814.pdf
https://economics.mit.edu/sites/default/files/2022-11/ACSS-NewFrontiers-20220814.pdf
https://www.oecd.org/content/dam/oecd/en/topics/policy-sub-issues/learning-in-the-digital-world/PISA
https://www.oecd.org/content/dam/oecd/en/topics/policy-sub-issues/learning-in-the-digital-world/PISA
https://www.oecd.org/content/dam/oecd/en/topics/policy-sub-issues/learning-in-the-digital-world/PISA
https://www.oecd.org/content/dam/oecd/en/topics/policy-sub-issues/learning-in-the-digital-world/PISA
https://www.oecd.org/content/dam/oecd/en/topics/policy-sub-issues/learning-in-the-digital-world/PISA
https://www.oecd.org/content/dam/oecd/en/topics/policy-sub-issues/learning-in-the-digital-world/PISA
https://doi.org/10.4135/wp254070
https://doi.org/10.7551/mitpress/9992.001.0001
https://doi.org/10.7551/mitpress/9992.001.0001
https://doi.org/10.7551/mitpress/13375.003.0005
https://doi.org/10.7551/mitpress/13375.003.0005
https://dl.acm.org/doi/10.1145/3017680.3017755
https://dl.acm.org/doi/10.1145/3017680.3017755
https://doi.org/10.5040/9781350296947.ch-008
https://doi.org/10.5040/9781350296947.ch-008
https://creativecommons.org/licenses/by-nc-nd/4.0/

Raspberry Pi Foundation UK registered charity 1129409

http://raspberrypi.org
https://www.youtube.com/c/RaspberryPiFoundation
https://www.instagram.com/raspberrypifoundation/
https://www.facebook.com/RaspberryPiFoundation
https://www.linkedin.com/company/raspberrypifoundation/
http://raspberrypi.org
https://twitter.com/RaspberryPi_org

	Button 2:
	Button 3:
	Instagram 4:
	Facebook 4:
	Button 4:
	Button 5:
	Button 6:

