
Summary

PRIMM is an approach that can help teachers
structure lessons in programming. PRIMM stands
for Predict, Run, Investigate, Modify and Make,
representing different stages of a lesson, or
series of lessons. PRIMM promotes discussion
between learners about how programs work,
and the use of starter programs to encourage
the reading of code before writing.

Using PRIMM to structure
programming lessons

The five stages of PRIMM

Pedagogy Quick Read

Predict: Students discuss a program and predict what it might do; they can
draw or write out what they think will be the output. At this level, the focus is
on the function of the code.

Run: Students run the program so that they can test their prediction
and discuss in class.

Investigate: The teacher provides a range of activities to explore
the structure of the code, such as tracing, explaining, annotating,
debugging, etc.

Modify: Students edit the program to change its functionality via a sequence of
increasingly more challenging exercises; the transfer of ownership moves from
 the code being ‘not mine’ to ‘partly mine’ as students gain confidence by
extending the function of the code.

Make: Students design a new program that uses the same structures, but
solves a new problem (ie has a new function).

You may not be able to go through all stages in one lesson and may even focus
on one stage more than another. Remembering PRIMM gives you a way of
labelling what you are doing when you are teaching programming.

The PRIMM approach builds and draws on other research in computing education, including Use-Modify-Create, tracing
and reading code before writing, the Abstraction Transition Taxonomy, and the Block Model. The focus on language
and talk, and the use of starter programs, draws on a sociocultural perspective to the way that children learn programming.

PRIMM is a way of structuring programming
lessons that focuses on

 Reading code before you write code
 Working collaboratively to talk about
 programs

 Reducing cognitive load by unpacking and
 understanding what program code is doing

 Gradually taking ownership of programs
 when ready

The five stages:

Predict
 Focus on the function of the code

 Encourage discussion

 Work in pairs or threes

Run
 Provide students with working code to run

 Check against prediction

Investigate
 Use a variety of activities, for example,
 tracing, annotating, questioning, etc

 Encourage students to discuss and work
 in pairs or small groups with the code

Modify
 Modify code in small steps to add new
 functionality

 Apply what has been learnt about the
 structure of the code
 Gradual increase in difficulty

Make
 Create a new program

 Practise the programming skills that have
 been learnt

 Can be a design or an open task

Does it work?
 A study in 2018 with 500 learners aged
 11–14 showed improved learning outcomes
 after 8–12 weeks of programming lessons
 using PRIMM

 PRIMM has been put into practice by
 many teachers in primary and secondary
 schools around the world

Lesson
structure

Language/
talk

Planning a lesson using PRIMM
Predict-Run-Investigate-Modify-Make

Content/
questions

Shared
artefacts

 PRIMM fosters
 structure

 Routine becomes
 familiar

 Educators adapt
 to students’ needs

 Each step can
 be further
 differentiated

 Students practise
 using appropriate
 programming
 terms

 Misconceptions
 can be articulated
 and explored

 Collaborative
 work is a key
 element of
 PRIMM

 Carefully selected
 questions help
 students explore
 the program

 Should be within
 student’s ZPD
 (zone of proximal
 development)

 Programs first
 shared with
 learner (’not mine’)

 Giving students a
 program to run
 (not copy) reduces
 anxiety

 Gradually student
 takes ownership
 (’mine’)

1

2

3 4 5

http://the-cc.io/qr11_2

References
1. Sentance, S., Waite, J., & Kallia, M. (2019) Teaching computer programming with PRIMM: a sociocultural perspective. Computer Science Education. 29 (2–3), 136–176.
DOI: 10.1080/08993408.2019.1608781.85.

2. Lee, I., Martin, F., Denner, J., Coulter, B., Allan, W., Erickson, J., Malyn-Smith, J. & Werner, L. (2011) Computational thinking for youth in practice. ACM Inroads. 2(1), 32–37.

3. Lister, R., Adams, E. S., Fitzgerald, S., Fone, W., Hamer, J., Lindholm, M., McCartney, R., Moström, J. E., Sanders, K., Seppälä, O., Simon, B. & Thomas, L. (2004)
A multi-national study of reading and tracing skills in novice programmers. ACM SIGCSE Bulletin. 36(4), 119–150.

4. Cutts, Q., Esper, S., Fecho, M., Foster, S. R. & Simon, B. (2012) The Abstraction Transition Taxonomy: Developing desired learning outcomes through the lens of situated
cognition. In: Proceedings of the Ninth Annual International Conference on International Computing Education Research. New York, ACM. pp. 63–70.

5. Schulte, C. (2008) Block Model: An Educational Model of Program Comprehension as a Tool for a Scholarly Approach to Teaching. In: Proceedings of the Fourth
International Workshop on Computing Education Research. New York, ACM. pp. 149–160.

6. Venables, A., Tan, G. & Lister, R. (2009) A closer look at tracing, explaining and code writing skills in the novice programmer. In: Proceedings of the Fifth International
Workshop on Computing Education Research. New York, ACM. pp. 117–128.

7. Walqui, A. (2006) Scaffolding instruction for English language learners: A conceptual framework. International Journal of Bilingual Education and Bilingualism. 9(2), 159–180.

Encouraging talk in the classroom

Read before you write
The first activity in a PRIMM-like
lesson involves predicting what a
small segment of code will do when
it runs. It doesn’t require stating how
it will do that, just the outcome. This
shouldn’t be an assessed exercise, so
that all children are encouraged to
have a go, and it’s important that it is
low stakes. Sometimes the output
can be drawn, sometimes the teacher
will provide some sample inputs, all
depending on what kind of code it is.

This aspect of PRIMM builds on
decades of research that has shown
that reading code before writing it is an
effective way to learn programming.
For example, work by Lister and
colleagues over many years highlighted
the importance of reading code and
being able to trace what it does before
writing new code. Comparing tracing
skills to code writing, they
demonstrated that novices require a
50% tracing code accuracy before they

from turtle import *
def square ():
 for counter in range (4):
 forward(100)
 right(90)

square()
left(45)
square()

can independently write code with
confidence.

Not starting from scratch
It can be very stressful for novice programmers to write
code into a blank editor window. The syntax needs to be
right, or quite intimidating error messages can appear. It’s
easy to be put off having a go, or for teachers to resort to
getting students to copy code that they don't yet understand.
By running a program that the teacher has written, the

learner doesn’t have ownership of that ‘starter’ program and
does not have the emotional angst when it doesn’t work.
That’s why in PRIMM, the Run stage involves running a
program provided on a shared drive to check the prediction.
Gradually, once the student has some understanding of how
the code works, they can modify the code and take
ownership of the new functionality.

Classroom discussion is an important aspect of the
teaching of many subjects, but isn’t often referred to with
respect to the teaching of programming. Many PRIMM
activities are carried out in pairs, and we already know
that pair programming is an effective form of learning,
and involves learners practising toarticulate what to do
when writing a program. PRIMM goes a step further
and encourages Predict and Investigate activities to
be carried out in pairs/small groups, away from the
computer. This has the following benefits:

 Talking about a program and how to works helps
 learners to find the right terminology to use to
 articulate their understanding. Having a common
 language to talk about programming constructs is
 important.

 Actually verbalising out loud the steps of a program
 that are difficult to understand can help learners to focus
 on atomic, or smaller elements at a time.

 Through dialogue with others, we can ask and answer
 questions, and learn from others

Drawing on sociocultural theory
Social constructivism, in particular the work of the
psychologist Vygotsky, can frame our understanding of
novice programmers and their learning. This interpretation
of the learning process can help us to develop effective
pedagogical strategies.

Vygotsky proposed that mediated activity promotes higher
mental processes, and identified three major forms of
mediation: material tools, psychological tools (including

language), and interaction with other human beings.
Mediation allows learners to act as apprentices before
internalising new ideas, and sociocultural theory (SCT)
suggests that movement from the ‘social plane’ to the
‘cognitive plane’ supports the learning of skills and
knowledge. With the PRIMM approach, the ‘starter
programs’ that are shared and discussed can be seen as
being on the social plane, with a mediated progression to
the cognitive plane once understood and internalised¹.

6

7

http://the-cc.io/qr11_3
http://the-cc.io/qr11_4
http://the-cc.io/qr11_5
http://the-cc.io/qr11_6
http://the-cc.io/qr11_7
http://the-cc.io/qr11_8
http://the-cc.io/qr11_9

