
Summary

In recent years, program comprehension has been recognised as an
important step in learning to program. It is a step that is easily missed
as learners dive straight into writing programs before they have learnt to
read them. What exactly is program comprehension, why is it so important,
and how can educators develop these skills with their learners?

Understanding program comprehension
using the Block Model

Learning programming has several
challenges:

Why do students find programming challenging?
Although programming is a valuable and rewarding skills to learn, many learners find the process challenging:

 Even simple programs are rich in concepts that can cause cognitive overload in learners
 Learners may rush to write programs too soon, before they have read and understood the relevant concepts
 Programs often don’t work first time, requiring persistence from learners
 Learners need to switch between different abstractions, the problem, the program text, and its execution, consistantly moving
 from single lines to the program as a whole
 Learners also need a mental model or notional machine for how the computer works and will execute the program

These challenges do not mean that programming is intrinsically difficult, and recognition of these challenges can help educators
identify where they can support their learners.

Program comprehension

Pedagogy Quick Read

Experienced programmers demonstrate a high degree of program comprehension. As well as having a robust notional
machine, they can develop programming ‘plans’ (chunks of code that perform a specific task), based on common features in
programs that they have seen. They can then use these plans or patterns to interpret, explain, adapt, debug, and create
programs.

Novice programmers know of very few (if any) programming plans, and have limited awareness of how programs are executed
(notional machine). Their focus may be limited to decoding individual words in a program, rather than comprehending their
meaning or the meaning of the wider program. As educators we need to understand how to bridge this gap.

Text surface (T) Program execution (P) Function/purpose (F)

Macro
structure (M)

Relationships (R)

Blocks (B)

Atoms (A)

Annotate code or draw
 a diagram to show the
 overall structure
 Restructure an ‘untidy’
 program

 Choose a name for a
 given program
 Select/write a sentence
 that describes a
 program’s purpose

 Identify inputs needed
 to test all program
 branches
 Will line X ever be
 executed?

Identify variable
 scope
 Highlight function
 calls

 Choose a name for
 a variable/function
 Are two programs/
 segments functionally
 equivalent

 Draw the flow of
 control
 Find redundant
 conditional
 branches

Identify block
 types, such as finite
 loops, ‘else’ conditions
 function definitions,
 etc

 Explain the purpose
 of a block of code

 Recording lines of
 code
 Parson’s Problems

Identify statement
 types, such as
 assignments and
 conditions

 Explain the purpose
 of a single line

 Trace values
 through a program

It is concept-rich, leading to cognitive
overload

It balances comprehension with coding
experience

It demands persistence and resilience

Learners need a secure mental model of
computation

It allows learners to interpret, explain,
adapt, debug, and create programs

It supports learners to develop
programming patterns or plans

It can be divided into 12 ‘zones’ using
the Block Model

Learners should develop knowledge in
each zone and be able to move between
them

Educators can use this Block Model
to categorise tasks and identify gaps
where students need support

A range of strategies already exist that
have been mapped to the Block Model

Program comprehension:

Comprehension tasks:

http://the-cc.io/qr12_2

References

Comprehension tasks

1. Maton, Izu, C., Schulte, C., Aggarwal, A., Cutts, Q., Duran, R., Gutica, M., Heinemann, B., Kraemer, E., Lonati, V., Mirolo, C. & Weeda, R. (2019) Program comprehension:
Identifying learning trajectories for novice programmers. In: ITiCSE '19: Proceedings of the 2019 ACM Conference on Innovation and Technology in Computer Science
Education. New York, ACM. pp. 261–262.

2. Schulte, C., Clear, T., Taherkhani, A., Busjahn, T. & Paterson, J. H. (2010) An introduction to program comprehension for computer science educators. In: Clear, A. &
Russell Dag, L. (eds.) ITiCSE-WGR '10: Proceedings of the 2010 ITiCSE working group reports. New York, ACM. pp. 65–86.

3. Clear, T. (2012) The hermeneutics of program comprehension: a 'holey quilt' theory. ACM Inroads. 3(2), 6–7.

4. Sentance, S. (2020) The I in PRIMM. Hello World. 14, 50–53.

There are already many great examples of activities that promote program comprehension, including tracing, Parson’s Problems,
PRIMM, and tasks in which learners ‘explain the purpose’. A teacher-focused study identified more than 60 different activities
that could support learners in developing program comprehension skills. It also highlighted that many of these activities were
already used, to assess program comprehension, rather than support its development.

As program comprehension is quite broad and there are a number of activities to choose from, it can be difficult for educators
to know which activities to use in which circumstances.

The Block Model

Mapping tasks to the Block Model
It is important to devise activities that develop
comprehension in each of these 12 zones, in order to
support learners’ full understanding of the program. By
considering each of the three dimensions in turn, we can
identify tasks that may foster comprehension at each level
of focus.

Comprehending the text surface can be tricky, as learners
need to discern the meaning from text with unfamiliar terms,
structures, and syntax. Without support, they may get stuck
focusing on the program at the ‘Atoms’ level. A simple
strategy that works at all levels of focus is to identify
aspects of the code within the text. By identifying examples
of variables, conditions, finite loops, functions, etc, educators
can help learners make sense of the text, and connect it to
underlying concepts.

During program execution, several approaches could be
used to help learners develop their understanding and their
mental models. For example, learners could trace simple
programs, determining the end state of variables or the
inputs required to reach a specific state. Learners could also

complete Parson’s Problems, which transcend the text
surface and enable learners to focus on the correct
sequence of instructions for a specified goal. Similarly,
learners could investigate the effect of swapping two lines
of code, or try to find lines that can never run. Note that
many of these activities are also good examples of the
‘Investigate’ phase of the PRIMM methodology.

Learners can also benefit from exploring function. Asking
learners to explain the function of a line, snippet, or entire
program is a great place to start. To do this, they will have to
use clues within the text and observe the execution.
Educators can vary the degree of challenge by the clues they
leave in the programs. Also, educators can connect function
back to text by asking learners to provide meaningful names
for variables, functions, or entire programs. Alternatively,
learners could be given a description of the purpose and
identify a program that matches, or compare multiple
programs to find which are functionally equivalent.

There are lots of options for educators to choose from, but
the most important step is to review our own practice, to
find and fill those gaps in learners’ program comprehension.

1

4

A useful tool for understanding and
categorising aspects of program
comprehension is the Block Model.
This framework captures captures what
level the learner is focused on:

 Atoms, the smallest element, are
 the keybords, symbols, and syntax,
 or a single line of code
 Blocks are small chunks of code
 that perform a task, eg single lines,
 loops, selection statements, or
 functions
 Relationships are the connections
 between blocks, and the manner in
 which they work together, such as
 function calls and return values.

 Macro structure refers to the
 program as a whole

The framework also considers the
‘dimension’ of the program, or how
the learner is viewing it:

 The program exists as a static
 piece of text. This is called the
 text surface and is where learners
 need to consider the grammer
 and syntax of their
 program.
 When the program is executed, it
 becomes a dynamic object that
 may behave differently depending
 on its inputs. This dimension is

 known as the program execution.

 A function soley concerns the
 purpose of the program or code
 snippet

The Block Model therefore comprises
12 zones of program comprehension
that learners should be able to move
between as they develop their
understanding. The related ‘holey
quilt’ theory suggests that learners
begin with varying levels of knowledge
in each zone, ranging from fragile to
deep. Knowledge is deepened over
time and can be supported by learning
acitivites targeting each zone.

2

3

http://the-cc.io/qr12_3
http://the-cc.io/qr12_4
http://the-cc.io/qr12_5
http://the-cc.io/qr12_6

