Raspberry Pi
Foundation

Summary
Pedagogy Quick Read Learning programming has several
challenges:
Understanding program comprehension « Itis concept-rich, leading to cognitive

using the Block Model

overload

It balances comprehension with coding
experience

r

Why do students find programming challenging?

In recent years, program comprehension has been recognised as an
important step in learning to program. It is a step that is easily missed

as learners dive straight into writing programs before they have learnt to
read them. What exactly is program comprehension, why is it so important,
and how can educators develop these skills with their learners?

Macro
structure (M)

Relationships (R)

Blocks (B)

Atoms (A)

Annotate code or draw
a diagram to show the
overall structure
Restructure an ‘untidy’
program

Identify inputs needed
to test all program
branches

Will line X ever be
executed?

~

It demands persistence and resilience

Learners need a secure mental model of
computation

Program comprehension:

e It allows learners to interpret, explain,
NN, adapt, debug, and create programs
given program
Select/write a sentence
that describes a
program'’s purpose

It supports learners to develop
programming patterns or plans

It can be divided into 12 ‘zones’ using

Identify variable
scope

Highlight function
calls

Draw the flow of
control

Find redundant
conditional
branches

Choose a name for the Block Model
a variable/function
Are two programs/
segments functionally

equivalent

Learners should develop knowledge in
each zone and be able to move between
them

Identify block

types, such as finite
loops, ‘else’ conditions
function definitions,
etc

Recording lines of
code

Parson’s Problems

Explain the purpose
of a block of code

Comprehension tasks:

¢ Educators can use this Block Model

Identify statement
types, such as
assignments and
conditions

Text surface (T)

Trace values
through a program

Program execution (P)

to categorise tasks and identify gaps
where students need support

Explain the purpose

of a single line

* A range of strategies already exist that
have been mapped to the Block Model

Function/purpose (F)

Although programming is a valuable and rewarding skills to learn, many learners find the process challenging:

Even simple programs are rich in concepts that can cause cognitive overload in learners
Learners may rush to write programs too soon, before they have read and understood the relevant concepts
Programs often don’t work first time, requiring persistence from learners

Learners need to switch between different abstractions, the problem, the program text, and its execution, consistantly moving
from single lines to the program as a whole

Learners also need a mental model or notional machine for how the computer works and will execute the program

These challenges do not mean that programming is intrinsically difficult, and recognition of these challenges can help educators
identify where they can support their learners.

Program comprehension

Experienced programmers demonstrate a high degree of program comprehension. As well as having a robust notional
machine, they can develop programming ‘plans’ (chunks of code that perform a specific task), based on common features in
programs that they have seen. They can then use these plans or patterns to interpret, explain, adapt, debug, and create

programs.

Novice programmers know of very few (if any) programming plans, and have limited awareness of how programs are executed
(notional machine). Their focus may be limited to decoding individual words in a program, rather than comprehending their
meaning or the meaning of the wider program. As educators we need to understand how to bridge this gap.


http://the-cc.io/qr12_2

Comprehension tasks

There are already many great examples of activities that promote program comprehension, including tracing, Parson’s Problems,
PRIMM, and tasks in which learners ‘explain the purpose’. A teacher-focused study ' identified more than 60 different activities
that could support learners in developing program comprehension skills. It also highlighted that many of these activities were
already used, to assess program comprehension, rather than support its development.

As program comprehension is quite broad and there are a number of activities to choose from, it can be difficult for educators
to know which activities to use in which circumstances.

The Block Model

A useful tool for understanding and
categorising aspects of program
comprehension is the Block Model.?
This framework captures captures what
level the learner is focused on:

o Macro structure refers to the
program as a whole

known as the program execution.

* A function soley concerns the
purpose of the program or code
shippet

The framework also considers the

‘dimension’ of the program, or how

the learner is viewing it:

e Atoms, the smallest element, are
the keybords, symbols, and syntax,

The Block Model therefore comprises

» The program exists as a static 12 zones of program comprehension

or a single line of code

¢ Blocks are small chunks of code
that perform a task, eg single lines,
loops, selection statements, or
functions

o Relationships are the connections
between blocks, and the manner in
which they work together, such as
function calls and return values.

piece of text. This is called the
text surface and is where learners
need to consider the grammer
and syntax of their

program.

When the program is executed, it
becomes a dynamic object that
may behave differently depending
on its inputs. This dimension is

that learners should be able to move
between as they develop their
understanding. The related ‘holey
quilt’ theory?® suggests that learners
begin with varying levels of knowledge
in each zone, ranging from fragile to
deep. Knowledge is deepened over
time and can be supported by learning
acitivites targeting each zone.

Mapping tasks to the Block Model

It is important to devise activities that develop
comprehension in each of these 12 zones, in order to
support learners’ full understanding of the program. By
considering each of the three dimensions in turn, we can
identify tasks that may foster comprehension at each level
of focus.

Comprehending the text surface can be tricky, as learners
need to discern the meaning from text with unfamiliar terms,
structures, and syntax. Without support, they may get stuck
focusing on the program at the ‘Atoms’ level. A simple
strategy that works at all levels of focus is to identify
aspects of the code within the text. By identifying examples
of variables, conditions, finite loops, functions, etc, educators
can help learners make sense of the text, and connect it to
underlying concepts.

During program execution, several approaches could be
used to help learners develop their understanding and their
mental models. For example, learners could trace simple
programs, determining the end state of variables or the
inputs required to reach a specific state. Learners could also

References

M.,

complete Parson’s Problems, which transcend the text
surface and enable learners to focus on the correct
sequence of instructions for a specified goal. Similarly,
learners could investigate the effect of swapping two lines
of code, or try to find lines that can never run. Note that
many of these activities are also good examples of the
‘Investigate’ phase of the PRIMM methodology.*

Learners can also benefit from exploring function. Asking
learners to explain the function of a line, snippet, or entire
program is a great place to start. To do this, they will have to
use clues within the text and observe the execution.
Educators can vary the degree of challenge by the clues they
leave in the programs. Also, educators can connect function
back to text by asking learners to provide meaningful names
for variables, functions, or entire programs. Alternatively,
learners could be given a description of the purpose and
identify a program that matches, or compare multiple
programs to find which are functionally equivalent.

There are lots of options for educators to choose from, but
the most important step is to review our own practice, to
find and fill those gaps in learners’ program comprehension.

Raspberry Pi 3 Clear, T (2012) m e a'holey quilt' theory. ACM
Foundation : World. 14, 50-:



http://the-cc.io/qr12_3
http://the-cc.io/qr12_4
http://the-cc.io/qr12_5
http://the-cc.io/qr12_6



