
An important precursor to learning to write computer programs is having
the necessary program comprehension to interpret the function and structure
of existing programs. One tool that can help learners develop program
comprehension is Parson’s Problems, which are exercises that require
learners to rearrange lines of code into the correct sequence.

Improving program comprehension
through Parson’s Problems

What is a Parson’s Problem?
A Parson’s Problem is a task in which learners are given all of the blocks or
lines of code needed to solve a problem, however, the lines have been jumbled
so that they are no longer in the correct order. Learners are asked to reorganise
the code into the correct order to perform a specific task.

The short example above shows some jumbled lines of code (in Python and Scratch), and sets out the task that needs to be
completed. Why not see if you can solve the problems in the example?

Parson’s Problems can be applied to both text- and block-based programming and can vary in difficulty, to accommodate
learners’ existing understanding. For example, when you feel that learners are ready, they could be provided with lines of code
and be expected to work out the indentation themselves (known as 2D Parson’s Problems).

There are many ways in which Parson’s Problems can be presented to learners. They make for an excellent offline or
paper-based activity that could be done individually, in pairs, or in small groups. You may choose to create problems directly in
the development environment to allow learners to immediately test their solutions. Alternatively, there are online tools such as
js-parsons that allow you to create your own interactive problems.

Parson’s Problems can be used to support formative assessment, as classroom discussion following the activity plays an
important part in learners’ development. Immediate feedback also avoids any misconceptions being committed to long-term
memory.

Pedagogy Quick Read

Rearrange the lines or blocks of code below to create a program that asks the
user for their name, then for their favourite food, before telling them that their
food choice is a good choice.

print("Hi "+ name + ". What is your favourite food?")
print(food + " is a good choice " + name)
food = input()
name = input()
print("Please enter your name: ")

Python

Scratch

Summary
Parson’s Problems reduce the cognitive
load for learners, reducing the need to
recall syntax; instead, learners can focus
on program structure and logic in a way
that is low-stakes and engaging.

Parson’s problems support
learners by:
 Developing learners’ understanding of
 how the program is executed (notional
 machine)

 Reducing cognitive load

 Focusing on blocks of code rather than
 syntax

 Providing all the correct code within an
 engaging challenge

 Promoting dialogue and discussion about
 code

Benefits of Parson’s Problems:
 Constrain the logic

 Avoid common syntax errors that can be
 barriers to learning to code

 Model good programming practices

 Provide the potential for immediate
 feedback

 Make it easier to identify common
 misconceptions

 Increase engagement of learners

Advice for writing Parson’s
Problems:
 Share problems with only a single
 solution

 Allow learners to manipulate actual code
 blocks

 Provide a clear description of the problem

 Clearly show the desired logic

 Share multiple similar problems over time

http://the-cc.io/qr13_2
http://the-cc.io/qr13_3
http://the-cc.io/qr13_4

The inclusion of distractors can add an additional level of challenge for more confident learners. However, care should be
taken, as they may unnecessarily increase the cognitive load or the time spent on a task, or even result in a misconception or
error being committed to long-term memory.

References

The benefits of Parson’s Problems

3

1. Denny, P., Luxton-Reilly, A. & Simon, B. (2008) Evaluating a New Exam Question: Parsons Problems. In: ICER '08: Proceedings of the Fourth International Workshop
on Computing Education Research. New York, ACM. pp. 113–124.

2. Izu, C., Schulte, C., Aggarwal, A., Cutts, Q., Duran, R., Gutica, M., Heinemann, B., Kraemer, E., Lonati, V., Mirolo, C. & Weeda, R. (2019) Fostering Program
Comprehension in Novice Programmers - Learning Activities and Learning Trajectories. In: ITiCSE-WGR '19: Proceedings of the Working Group Reports on Innovation
and Technology in Computer Science Education. New York, ACM. pp. 27–52.

3. Harms, K. J., Chen, J. & Kelleher, C. L. (2016) Distractors in Parsons Problems Decrease Learning Efficiency for Young Novice Programmers. In: ICER '16: Proceedings
of the 2016 ACM Conference on International Computing Education Research. New York, ACM. pp. 241–250.

The main benefit of Parson’s Problems is that the learner is focusing on the structure and logic of blocks of code, rather than the
syntax of individual text elements (atoms). The process reduces the cognitive load experienced by learners, allowing them to
practise sequencing and problem-solving with code. This experience is particularly helpful in the early stages of learning to
program, when learners may be easily frustrated and put off by repeated unsuccessful attempts to solve a problem. Parson’s
Problems also expose learners to logic and syntax that they may not be fully familiar with.

Denny et al. suggest that learners’ solutions to a Parson’s Problem “make clear what students don’t know (specifically in both
syntax and logic)”. These solutions can allow for an easier analysis of the common errors that learners make, whereas “the
open-ended nature of code-writing questions makes identifying such errors difficult”. For example, when using a Parson’s
Problem, we can be sure that an error was not caused by a typing mistake.

Parson’s Problems can promote some higher-order thinking in learners than simple code tracing (reading code and identifying its
purpose or output). Parson’s Problems can act as a stepping stone between the lowest and highest categories — being able to read
and interpret code and being able to write original code, which involves evaluation and creation (the highest categories in Bloom’s).

Izu et al. place Parson’s Problems in the ‘Blocks’ row of the Block Model proposed by Schulte. They state that “novice
programmers should develop program comprehension skills as they learn to code so that they are able both to read and reason
about code created by others, and to reflect on their code when writing, debugging or extending it”. They also state that Parson’s
Problems support learners in developing their understanding of the notional machine.

Distractors
 Some Parson’s Problems include distractors. Distractors are incorrect blocks or lines of code that are
 included in the set of provided code, meaning that learners need to be selective about which blocks they
 use.

Rearrange the lines of code to create
a program that outputs the total cost
to the customer. Be aware that there
are two lines of code that will cause
errors in your program if used.

price = 3.50
quantity = 5
total = price * Quantity
total = price * quantity
print(total)
print("total")

Advice for writing Parson’s Problems
Provide learners with a clear
explanation of what the program
should do when correctly sequenced
— doing so reduces their cognitive
load. Additionally, Denny et al.
recommend making sure that there is
a unique answer for each question, ie
there should only be one order of the
lines that achieves the goal.

Ensure that learners manipulate the

actual lines of code, rather than using
letters or numbers as a shorthand.
Working with real lines of code helps to
develop their familiarity with the syntax
and the construction of the code.

In theory, it is possible for learners to
guess the correct answer to a simple
Parson’s Problem without fully under-
standing the construct or logic being
tested. Asking more than one question

over time that tests the same logic
or construct can reduce this
concern.

Providing structure (eg braces,
colons, indentation) can make a
question more accessible, as
learners can use these visual clues
to develop their solution. Providing
this structure can also make
problems including more complex
programming concepts possible.

1

2

1

References

http://the-cc.io/qr13_5
http://the-cc.io/qr13_6
http://the-cc.io/qr13_7
http://the-cc.io/qr13_8
http://the-cc.io/qr13_9

