
Summary
Developed in the early 2000s, code tracing is a well-established approach
to help learners develop their program comprehension. Put simply, it
involves reading and analysing code, before running it to predict its
outcome. Novice programmers should be competent in code tracing before
they can confidently write programs of their own.

Code tracing

What is code tracing?
It is widely understood that young learners should ideally have developed some reading skills before they begin learning to write.
Similarly, in computing, there is a body of evidence to suggest that code tracing, a form of code reading, is an effective
precursor to code writing and independent programming.

When tracing code, learners review chunks of code, or whole programs, and record its expected behaviour and execution flow
at various stages. This can be captured through annotation as well as recording the program output at each stage. The Teach
Computing Curriculum ‘Programming’ units include examples of code tracing tasks. Learners may be asked to trace a piece
of code, predict the outcome, and then be guided through the code, line by line to test their prediction. Typically, prediction is
done away from the computer to ensure learners focus on reading rather than executing the code. Learners could also be given
short sections of code in the form of worked examples, or complete trace tables, where some values are provided and learners
use code tracing to record the missing values. With this secure understanding, learners can then be given the opportunity to
create their own program featuring the concepts they have traced. While there is no single approach to tracing, there are some
clearly defined methods such as TRACS which may be useful for learners to follow.

Here, we explore the benefits of code tracing, how it fits in with the concept of the notional machine, strategies to employ to
lighten cognitive load, and how code tracing can be used in the classroom.

Pedagogy Quick Read

In the example above, elements of the program flow and code are provided. By completing the variables table, learners can demonstrate
their understanding of the program through code tracing.

Counter = 1

while counter < 4 :

print ("End of program")

 print ("Happy days")

 counter = counter + 1

True

Fa
ls

e

1. Highlight all the

 expressions

2. Use arrows to

 show the order of

 execution

3. Follow the

 program and fill

 in the variables

 table and the

 output box

1

Variables table

counter

1

2

3

4

What is output?

Happy days

Happy days

Happy days

End of program

Tracing involves:
Reading the code

Interpreting the meaning

Recording the flow and/or outputs

Benefits of tracing:
Fosters program comprehension

Improves code writing

Supports learners to be able
to analyse and explain code

Exposes misconceptions

Reduces cognitive load

Helps learners develop a
consistent notional machine

http://the-cc.io/qr14_2
http://the-cc.io/qr14_3
http://the-cc.io/qr14_4

References

Benefits?

This Pedagogy Quick Read was
adapted from Paul Curzon’s blog,
which is based on the work of Karl
Maton applied to a computing
context. We would like to thank
them both for their input.

1. Donaldson, P. and Cutts, Q., 2018, October. Flexible low-cost activities to develop novice code comprehension skills in schools. In Proceedings of the 13th Workshop
in Primary and Secondary Computing Education (pp. 1-4).

2. Hertz, M. and Jump, M., 2013, March. Trace-based teaching in early programming courses. In Proceeding of the 44th ACM Technical Symposium on Computer Science
Education (pp. 561-566).

3. Lister, R., Adams, E.S., Fitzgerald, S., Fone, W., Hamer, J., Lindholm, M., McCartney, R., Moström, J.E., Sanders, K., Seppälä, O. and Simon, B., 2004. A multi-national
study of reading and tracing skills in novice programmers. ACM SIGCSE Bulletin, 36(4), pp. 119-150.

4. Du Boulay, B., 1986. Some difficulties of learning to program. Journal of Educational Computing Research, 2(1), pp. 57-73.

5. Raspberry Pi Foundation, Pedagogy Quick Reads: Using PRIMM to structure programming lessons. Available from: the-cc.io/qr11

Harrington identified that when learning programming, learners build their understanding in a hierarchical way, with tracing at the
most basic level, then explaining the code, before they progress on to writing. Many other studies have been completed based
on this theory. Hertz and Jump, who developed the ‘trace-based-teaching’ model, found that starting a class with 20 to 30
minutes of tracing increased attainment and decreased drop-out rates. A 2004 study found that learners who could trace
effectively less than 50% of the time could also not explain it effectively. If we accept there is a broad consensus advocating
code tracing as an effective strategy with a broad range of evidence to support the claim, what should we consider when using it
in the classroom?

The notional machine
To trace code effectively, learners must have some understanding of the notional machine. This concept was first introduced by
Benedict du Boulay and describes the conceptual model that learners have about how a computer processes instructions and
data.

The notional machine can look very different depending on the type of programming language being used. In Scratch, it is
simple to run more than one process concurrently (threading), whereas in most text-based languages (including Python) this is
more complex. This has implications for how we begin to teach programming in Scratch. Learners may demonstrate that they
can use threads but may not understand how the machine handles them. This gap in their notional machine understanding can
lead to gaps in their knowledge or to misconceptions. Encouraging learners to use threads in Scratch without addressing the
notional machine may lead to later problems for teachers when learners find threading more difficult to achieve in Python.

Lightening the load

Code tracing can contribute to a
reduction of the cognitive load placed
on learners.

In focusing learners' efforts on
existing and working programs, and
answering specific questions,
educators can avoid unnecessary

extraneous load being placed on their
learners. By giving learners the
opportunity to trace code, they can
comprehend the code and its function
before they see it in action. This
approach also helps develop their
understanding of the notional machine

— how the code is executed. Many
other areas of the curriculum explore
similar ideas, such as Talk for Writing
in literacy and progressing from
concrete objects to abstract
numerals in mathematics.

In context application
Code tracing can be incorporated in the classroom as a stand-alone acitivity or as part of a wider approach.

 The PRIMM (Predict, Run, Investigate, Modify, Make) approach is ideally suited to it as it required learners to Predict in its

 first step, which involves reading and tracing.

 Begin a programming activity or project by providing learners with an existing project or snippet of code.

 Tracing is also a good way to check learners’ understanding of the capabilities of the notional machine. Using examples

 where specific misconceptions may lead to an incorrect solution, the act of tracing can expose and help address this

 misconception.

2

3

4

5

http://the-cc.io/qr14_6
http://the-cc.io/qr14_7
http://the-cc.io/qr14_8
http://the-cc.io/qr14_9
http://the-cc.io/qr14_10

