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Computational Thinking 2.0 Key concepts
Problem solving

•	CT1.0 applies rules-based 
approaches to problem 
solving, like those used in 
Scratch and Python. 

•	CT2.0 presents a shift towards 
a data-driven approach 
to problem solving.

•	Model evaluation, data quality, 
and bias become important 
in CT2.0, as flawed data can 
lead to unfair outcomes.

Correctness

•	CT1.0 typically teaches 
correctness as binary, 
where programs do or don’t 
produce correct outcomes.

•	CT2.0 measures correctness 
by degree, where ML models 
generate predictions and 
levels of confidence. 

Debugging

•	In CT1.0, debugging is structured 
and transparent. Errors are 
addressed by tracking the 
program execution step by step.

•	In CT2.0, ML models are opaque 
black boxes. Problems are found 
through analyses of the input and 
output data.

•	This requires a shift in the 
debugging mindset, focusing on 
improving training data, tuning 
parameters, and testing with a 
diverse range of data.

Computational Thinking (CT) has become a cornerstone of computing education. 
CT2.0 has recently been introduced by Matti Tedre and his team¹ to help learners 
distinguish between traditional rule-based approaches (CT1.0) to problem 
solving, and the data-driven approaches (CT2.0) used by AI systems. As systems 
increasingly include both rule-based and data-driven elements, it is essential for 
learners to understand the differences and to be able to work with both paradigms. 

Problem solving
CT is a framework for understanding 
problem solving using computation. 
Traditional CT1.0 emerged from early 
computing concepts, using a rule-
based approach where computer 
programs follow precise instructions: 
with a well-defined input, instructions 
are followed step by step to produce 
a predictable output. When teaching 
with CT1.0, learners learn to break 
down the task into subtasks and write 
clear instructions for each step before 
implementing these instructions in tools 
like Scratch and languages like Python.

In contrast, problem solving in CT2.0 
shifts to a data-driven approach¹. Rather 
than writing explicit instructions,  

learners learn to collect, clean, label, 
and organise large amounts of relevant 
data. Learners then use this data to 
train machine learning (ML) systems 
to identify patterns and produce 
models that generate predictions 
and solve problems. For example, in 
CT1.0, learners could create a tool 
that classifies cats using If...Then 
rules about whiskers and pointy ears. 
However, in CT2.0, they would use 
many images of cats to train a model 
with sufficient accuracy. Because data 
is central to this process, data quality, 
evaluation, and bias become critical 
concepts: flawed or biased datasets can 
lead to unreliable or unfair outcomes.

Modern applications combine both rule-
based and data-driven approaches —  

from AI-generated text and images, 
to face recognition software and 
social media recommendations. 
Understanding both CT1.0 and CT2.0 
empowers learners not only to work 
effectively with these tools, but also 
to be active participants and creators 
rather than passive consumers in our 
increasingly data-driven societies².
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Understanding correctness
Correctness is an important concept 
in computing and determines 
whether a program functions as 
intended. In CT1.0, we often teach 
learners that correctness involves 
a program being either correct or 
incorrect. This approach emphasises 
precision, where instructions must 
be syntactically correct, written 
logically, and produce the expected 
outcome. Rule-based programs 
characterised by CT1.0 assume a 
high level of transparency: every 
instruction is explicitly written and 
can be traced back, errors can be 
pinpointed, and corrections can 
be tested and implemented.

In CT2.0, correctness is no longer a 
fixed correct-or-incorrect. Outcomes 
in many ML models are probability-
based predictions with varying levels of 
confidence¹. For example, an ML model 
might classify a picture of a cat with a 
95% confidence score. Even well-trained 
ML models, despite being trained on 
large amounts of data, could produce 
errors, especially with new inputs. For 
example, an image of a cat could be 
incorrectly classified as a dog with a 60% 
confidence score. Developers define 
acceptable levels of correctness when 
designing and building ML models. This 
requires developers to carefully tune 
the training process and set appropriate 
confidence thresholds to determine 
whether a prediction is acceptable for a 
specific context.

For educators, this shift in 
understanding correctness requires 
helping young people to develop critical 
thinking skills around data-driven 
tools and AI systems. We could guide 
learners to ask deeper questions: 
“How reliable is this prediction with 
new data?” or “What biases might 
be in the training data?” By framing 
correctness or suitability in CT2.0 
as an ongoing process of evaluation 
and continuously refining models 
to improve their reliability in real-
world applications rather than a fixed 
outcome, we prepare learners not 
just to use AI tools, but to recognise 
system limitations and potential 
harms caused by system outputs.

Debugging
Debugging is another practice that takes on different forms in CT1.0 
and CT2.0. For example, if a rule-based program implemented in either 
Scratch or Python doesn’t work as expected, learners can display variable 
values, set breakpoints, or trace the code line by line to find where 
things went wrong. Because of the high level of transparency in such 
programs, we can use systematic and structured debugging practices.

However, ML models are often seen as black boxes³, and this opacity 
makes debugging in CT2.0 less straightforward. ML models are 
complicated, interconnected networks with billions of parameters 
that determine outcomes and predictions in ways that are impossible 
to trace step by step. When an image classifier incorrectly labels an 
image of a cat as a dog, learners can’t simply find the line of code 
causing the error because there isn’t one. Instead, debugging in CT2.0 
involves examining and improving the quality of the training data, 
tuning variables and parameters, and testing with a range of diverse 
inputs to identify patterns in errors (e.g. cats with pointy ears are more 
likely to be misclassified as dogs). Debugging now requires educators 
to shift from finding bugs and error correction to focusing on how 
changes to data and parameters can affect overall performance.

Why CT2.0 matters
Without CT2.0, today’s learners will remain 
passive consumers rather than informed 
participants in a world increasingly shaped 
by data-driven AI technologies. Integrating 
CT2.0 alongside traditional computational 
thinking provides learners with an accurate 
understanding of computing systems, 
including how problem solving, correctness, 
and debugging differ in data-driven systems. 

This will empower learners to critically 
evaluate ML models, understand how data 
is used to train models, identify potential 
biases, and even create their own ML 
projects. Embracing CT2.0 makes computing 
more realistic and representative of the real 
world, offering learners pathways beyond 
traditional programming and towards future 
careers where AI literacy is crucial. 
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