
Pedagogy Quick Read

Computational Thinking 2.0 Key concepts
Problem solving

•	CT1.0 applies rules-based
approaches to problem
solving, like those used in
Scratch and Python.

•	CT2.0 presents a shift towards
a data-driven approach
to problem solving.

•	Model evaluation, data quality,
and bias become important
in CT2.0, as flawed data can
lead to unfair outcomes.

Correctness

•	CT1.0 typically teaches
correctness as binary,
where programs do or don’t
produce correct outcomes.

•	CT2.0 measures correctness
by degree, where ML models
generate predictions and
levels of confidence.

Debugging

•	In CT1.0, debugging is structured
and transparent. Errors are
addressed by tracking the
program execution step by step.

•	In CT2.0, ML models are opaque
black boxes. Problems are found
through analyses of the input and
output data.

•	This requires a shift in the
debugging mindset, focusing on
improving training data, tuning
parameters, and testing with a
diverse range of data.

Computational Thinking (CT) has become a cornerstone of computing education.
CT2.0 has recently been introduced by Matti Tedre and his team¹ to help learners
distinguish between traditional rule-based approaches (CT1.0) to problem
solving, and the data-driven approaches (CT2.0) used by AI systems. As systems
increasingly include both rule-based and data-driven elements, it is essential for
learners to understand the differences and to be able to work with both paradigms.

Problem solving
CT is a framework for understanding
problem solving using computation.
Traditional CT1.0 emerged from early
computing concepts, using a rule-
based approach where computer
programs follow precise instructions:
with a well-defined input, instructions
are followed step by step to produce
a predictable output. When teaching
with CT1.0, learners learn to break
down the task into subtasks and write
clear instructions for each step before
implementing these instructions in tools
like Scratch and languages like Python.

In contrast, problem solving in CT2.0
shifts to a data-driven approach¹. Rather
than writing explicit instructions,

learners learn to collect, clean, label,
and organise large amounts of relevant
data. Learners then use this data to
train machine learning (ML) systems
to identify patterns and produce
models that generate predictions
and solve problems. For example, in
CT1.0, learners could create a tool
that classifies cats using If...Then
rules about whiskers and pointy ears.
However, in CT2.0, they would use
many images of cats to train a model
with sufficient accuracy. Because data
is central to this process, data quality,
evaluation, and bias become critical
concepts: flawed or biased datasets can
lead to unreliable or unfair outcomes.

Modern applications combine both rule-
based and data-driven approaches —

from AI-generated text and images,
to face recognition software and
social media recommendations.
Understanding both CT1.0 and CT2.0
empowers learners not only to work
effectively with these tools, but also
to be active participants and creators
rather than passive consumers in our
increasingly data-driven societies².

Image based upon original comparison from Tedre, Denning, and Toivonen¹

References
1. Tedre, M., et al. (2021). CT 2.0. the-cc.io/qr21_1
2. Vartiainen, H., et al. (2021). Machine learning for middle schoolers: Learning through data-driven design.

the-cc.io/qr21_2
3. Hitron, T., et al. (2019). Can children understand machine learning concepts? The effect of uncovering black

boxes. the-cc.io/qr21_3

Understanding correctness
Correctness is an important concept
in computing and determines
whether a program functions as
intended. In CT1.0, we often teach
learners that correctness involves
a program being either correct or
incorrect. This approach emphasises
precision, where instructions must
be syntactically correct, written
logically, and produce the expected
outcome. Rule-based programs
characterised by CT1.0 assume a
high level of transparency: every
instruction is explicitly written and
can be traced back, errors can be
pinpointed, and corrections can
be tested and implemented.

In CT2.0, correctness is no longer a
fixed correct-or-incorrect. Outcomes
in many ML models are probability-
based predictions with varying levels of
confidence¹. For example, an ML model
might classify a picture of a cat with a
95% confidence score. Even well-trained
ML models, despite being trained on
large amounts of data, could produce
errors, especially with new inputs. For
example, an image of a cat could be
incorrectly classified as a dog with a 60%
confidence score. Developers define
acceptable levels of correctness when
designing and building ML models. This
requires developers to carefully tune
the training process and set appropriate
confidence thresholds to determine
whether a prediction is acceptable for a
specific context.

For educators, this shift in
understanding correctness requires
helping young people to develop critical
thinking skills around data-driven
tools and AI systems. We could guide
learners to ask deeper questions:
“How reliable is this prediction with
new data?” or “What biases might
be in the training data?” By framing
correctness or suitability in CT2.0
as an ongoing process of evaluation
and continuously refining models
to improve their reliability in real-
world applications rather than a fixed
outcome, we prepare learners not
just to use AI tools, but to recognise
system limitations and potential
harms caused by system outputs.

Debugging
Debugging is another practice that takes on different forms in CT1.0
and CT2.0. For example, if a rule-based program implemented in either
Scratch or Python doesn’t work as expected, learners can display variable
values, set breakpoints, or trace the code line by line to find where
things went wrong. Because of the high level of transparency in such
programs, we can use systematic and structured debugging practices.

However, ML models are often seen as black boxes³, and this opacity
makes debugging in CT2.0 less straightforward. ML models are
complicated, interconnected networks with billions of parameters
that determine outcomes and predictions in ways that are impossible
to trace step by step. When an image classifier incorrectly labels an
image of a cat as a dog, learners can’t simply find the line of code
causing the error because there isn’t one. Instead, debugging in CT2.0
involves examining and improving the quality of the training data,
tuning variables and parameters, and testing with a range of diverse
inputs to identify patterns in errors (e.g. cats with pointy ears are more
likely to be misclassified as dogs). Debugging now requires educators
to shift from finding bugs and error correction to focusing on how
changes to data and parameters can affect overall performance.

Why CT2.0 matters
Without CT2.0, today’s learners will remain
passive consumers rather than informed
participants in a world increasingly shaped
by data-driven AI technologies. Integrating
CT2.0 alongside traditional computational
thinking provides learners with an accurate
understanding of computing systems,
including how problem solving, correctness,
and debugging differ in data-driven systems.

This will empower learners to critically
evaluate ML models, understand how data
is used to train models, identify potential
biases, and even create their own ML
projects. Embracing CT2.0 makes computing
more realistic and representative of the real
world, offering learners pathways beyond
traditional programming and towards future
careers where AI literacy is crucial.

This resource by Raspberry Pi Foundation is licensed under CC BY-NC-SA 4.0.
To view a copy of this license, visit https://creativecommons.org/licenses/by-nc-sa/4.0/

http://the-cc.io/qr21_1
http://the-cc.io/qr21_2
http://the-cc.io/qr21_3
https://creativecommons.org/licenses/by-nc-sa/4.0/
https://creativecommons.org/licenses/by-nc-sa/4.0/

