
Pedagogy Quick Read

Levels of Abstraction:
Equipping learners with the skills
to confidently create algorithms

Key concepts

When teaching learners how
to design and create computer
programs, we must also teach them
how to abstract information².

The Levels of Abstraction hierarchy
model defines 4 discrete levels that
programmers move between.

•	This hierarchy enables teachers
and learners to describe which
level they are working at.

•	Learners who are aware of the
level they are working in have
the opportunity to become more
skilled at moving between the
different levels and may become
more effective programmers³.

Abstraction is acknowledged as one of the key concepts in computational
thinking, and the programmer’s ability to successfully move between different
levels of abstraction is a central skill. The researcher Jeannette Wing
emphasised that “thinking like a computer scientist means more than being able
to program a computer. It requires thinking in multiple levels of abstraction”¹.

Learning to program involves far more than understanding the syntax and
semantics of a programming language. Programming also involves being able to:

•	Understand, or clearly state, the task or problem that is being addressed

•	Design a solution to the problem and create an algorithm

•	Implement an algorithm in an appropriate programming language

•	Run and debug the program

Teaching all of these skills at once greatly increases the cognitive load placed
on learners.

What is abstraction?
Abstraction is the ability of the programmer to adjust their focus while they develop a programmed solution. The programmer
needs to be able to move between the goals of the task, their design for a solution, the building and coding of a program, and
the behaviour of that program when it runs. Each of these focuses can be considered a different abstraction of the problem as
a whole, and each requires different skills and amounts of information to be considered by the programmer4.

Defining the levels
Perrenet, Groote and Kaasenbrood
investigated learners’ understanding
of the concepts of algorithms5. From
this they defined a hierarchy of levels of
abstraction. The work of Perrenet and
colleagues has been the focus of many
further studies, and the defined levels
of abstraction have been refined along
the way. In 2018, Waite and colleagues
built upon this work and further work
by Statter and Armoni³, and adapted
the levels for learners in the K–5 age
range, simplifying the language used to
support understanding by K–5 teachers
and learners6.

Exemplification of each level of abstraction within the K–5 adaption proposed by Waite2

The levels in detail

References
1. Wing, J. (2008). Computational thinking and thinking about computing. the-cc.io/qr24_1
2. Waite, J. L. (2024). Teaching the design of K-5 programs: a practitioners’ view and a design toolkit for teachers and researchers.

the-cc.io/qr24_2
3. Statter, D., & Armoni, M. (2020). Teaching abstraction in computer science to 7th grade students. the-cc.io/qr24_3
4. Raspberry Pi Foundation (2022). Programming and algorithms within the Computing Curriculum. the-cc.io/qr24_4
5. Perrenet, J., et al. (2005). Exploring students’ understanding of the concept of algorithm. the-cc.io/qr24_5
6. Waite, J., et al. (2018). Abstraction in action: K-5 teachers’ uses of levels of abstraction, particularly the

design level, in teaching programming. the-cc.io/qr24_6
7. Nakar, L., & Armoni, M. (2023). On teaching abstraction in computer science: secondary-school teachers’

perceptions vs. practices. the-cc.io/qr24_7

Using the hierarchy in your classroom
A number of guidelines for using the levels of abstraction framework with your
learners have been suggested throughout the research into this topic:

•	Be persistent and precise: Be careful not to mention multiple levels together. For
example, when working in the problem level, elements of “how” the problem may be
solved should not be discussed; these belong in the level below7.

•	Have clear distinctions between each level: By using language that is specific
for its level, learners will understand the boundaries of the levels better and are
more likely to recognise when they are moving between the levels7.

•	Learners should begin at the highest level of abstraction they are working with
and then be supported to consciously move between levels, both up and down,
throughout the programming process7. For example, learners may need to
match a running program to a problem, or code to a design.

Problem level The problem level is a high-level written or verbal description of the project. It could be a short
paragraph that describes and defines what the requirements of the project are, for example
“Create a quiz program to test 8–9 year old children on their times tables”. When completing
this level, more complex problems may require more than just a short paragraph.

Design level
(including the
algorithm)

In the design level, a written, verbal or drawn depiction of the project is created. This
should be more detailed than the problem definition, but should not refer to the code that
could be used to implement it. The format of the design should be adapted to match the
requirements of the project. For example, a storyboard or flow chart could be created
depending on the type of project. It is at this level that the algorithm is developed. It is
important that the language used at this level is not specific to any programming language.

Code level In this level, the design is implemented (coded) in a suitable programming language(s). As
well as developing the program code, this level could contain verbal or written reference to
particular programming languages. In a physical computing project, this level would also
contain the building of the physical elements of the project.

Running the code level At this level, the programmer is focused on running the code and the outputs of the
program. It is at this level that debugging of the coded solution happens and could be
recorded in some manner, through observations or tests, such as “When answering a
question correctly the score increased by two”.

Language
With any new topic being
introduced, learners’ understanding
of the new vocabulary introduced
is vital to their progression in the
subject. By using language that is
specific to the level of abstraction
you are working in, you can help
learners avoid confusion. For
example, names of programming
languages should only be used
when you are in the code level. If
you were using Scratch you could
use the specific term “broadcast”
when in the code level, but when
you were in the design level a more
appropriate term would be “inform”7.

This resource by Raspberry Pi Foundation is licensed under CC BY-NC-SA 4.0.
To view a copy of this license, visit https://creativecommons.org/licenses/by-nc-sa/4.0/

https://the-cc.io/qr24_1
http://the-cc.io/qr24_2
http://the-cc.io/qr24_3
http://the-cc.io/qr24_4
http://the-cc.io/qr24_5
http://the-cc.io/qr24_6
http://the-cc.io/qr24_7
https://creativecommons.org/licenses/by-nc-sa/4.0/
https://creativecommons.org/licenses/by-nc-sa/4.0/

