
Pair programming is a pedagogical approach that you can use in your 
classroom which involves learners working together on a problem to 
develop programs. This Quick Read aims to highlight the benefits of the
approach, as well as factors to consider when applying pair programming 
in the classroom. 

Driver/navigator
    Learners take turns playing the role of the 
    driver and the navigator, swapping roles 
    at regular intervals

    The driver controls the keyboard and 
    mouse and will write the code

    The navigator focusses on the wider aims 
    of the task, spots errors, problem-solves, 
    and reads out instructions to the driver  

Benefits
    Reduction in individual cognitive load via 
    the collective working memory effect

 Improved confidence in finding solutions, 
    particularly among female students

 Improved quality of programs (fewer
    errors, more efficient and elegant code)

    Retention of learners’ interest in the 
    activities, lessons, and subject

Key considerations
 Communication is key: spend time 

    modelling, emphasising, and rewarding 
    these skills

    Spend time ahead of the lesson carefully 
    planning the pairings based on skills, 
    personalities, or friendships

    Ensure that both the driver and navigator 
    are always working on the same task at 
    the same time

    Experiment with length of intervals to suit 
    your learners’ needs

    Ensure that summative assessment is 
    based on paired and individual work/tests, 
    with a greater weighting to individual work

    Check that both members of the pair are 
    fulfilling their roles, and do not allow one 
    to dominate

Summary

What is pair programming?

Pedagogy Quick Read 

2

Pair programming supports learners to 
produce better solutions to complex 

programming problems

Pair programming is an approach where two people work together to write 
a program or solve a problem whilst sharing a single computer. Pair 
programming is routinely used in the software industry and soon came to 
education as the observed benefits became clear.

Application of this concept is more structured than simply asking two learners 
to work together. Pairing learners without giving guidance as to how you want 
them to work together can often lead to one, or both, learners quickly losing focus. 
There needs to be an initial investment of time to develop effective paired work. 
Ideally, both learners should be engaged and contributing equally to the task. Poor communication can be detrimental to the 
pair’s collaboration and can cancel out the benefits of pair programming. Therefore, an essential part of making pair 
programming a success is spending time ensuring that learners have a good understanding of the roles that they will fulfil 
during the task. 

The driver will control the keyboard, mouse, or pen, depending on the task. They will write the code or design the algorithm. 
These tasks have a low-level cognitive demand for the learner and allow them to concentrate on writing code accurately, 
rather than also having to focus on tasks such as problem-solving, deciphering the instructions, and algorithm development.

The navigator will support the driver, watching with a keen eye for any errors being made. The navigator will also play a 
strategic role by thinking of alternative solutions to problems, reading the notes from the teacher, or even walking around 
the class to look at what others are doing. These tasks have a higher cognitive demand than the tasks of the driver, but as 
the navigator doesn’t have the responsibility of having to write the code, the extraneous load on each member of the pair 
is reduced. 

Learners choose, or are assigned, an initial role and once the task has started, they swap roles regularly — approximately 
every 5 to 10 minutes (depending on the activity). This will make sure that everyone is playing an equal and active role, 
and they are encouraged to think in different ways and both take ownership of the problem that they are solving.

Cognitive load
shared via

collective memory

effective
Requires

communication

Swap roles regularly

NavigatorDriver
   Focusses on the wider aims of the task
   Provides guidance, spots errors,
   problem-solves, and helps decipher
   instructions

   Focusses on the implementation
   Operates the computer
   Takes advice from the navigator

http://the-cc.io/qr03_2
http://the-cc.io/qr03_3


Suggested benefits

References

Practical considerations
Pairing learners
As an educator, you will need to use your professional judgement to choose the best pairings in order to optimise the 
benefits of the collective working memory effect.   Key factors that could be considered when creating pairs include the 
following: 
    The learners’ personalities and social affinity (degree of comfort working together) should be considered for sustained 
    or complex tasks, as the pair will benefit from their established relationship. 
    Many studies advocate focussing on the ‘skill sets’ of the learners when pairing.  Whilst there is no consensus from 
    research as to which skill-based pairings are most successful, it is good to start by pairing learners with more advanced 
    skills with learners with less advanced skills.

Whichever method of pairing you opt for, it is important to check in regularly with pairs to ensure that they are working 
well.

Assessment
Learners should be assessed on both their paired work and their individual work. It is not recommended that any 
summative assessment be based solely on the work that they complete as a pair. Preston   makes two recommendations 
for assessment to encourage individual accountability with pair programming:
    Assessment should require students to develop code, interpret code, or both
    Assessment scores for individuals should be weighted more heavily than the joint project score when determining the 
    final grade

Further advice and guidance can be found in a middle school–focused paper by Werner and Denning.

There are several benefits from pair programming that have been observed through a range of studies. For example, 
through pair programming, the learners’ individual cognitive load is reduced, because the tasks to complete are shared 
between them. This is known as the collective working memory effect. Pair programming “separates tasks with 
low-level demands (typing, computer management and navigation) from tasks with higher cognitive demands (syntax 
analysis, algorithm development, problem search)”.   However, poor communication between learners can create 
additional cognitive load, which could eliminate the benefits of this effect (see ‘Pairing learners’).

Another benefit of pair programming is the likely improvement of the quality of the programs produced by the learners. 
The learners support each other by debugging, spotting syntax errors as they occur, and making their code more 
elegant and efficient. 

Although most studies conducted so far have been with university students, they suggest    that pair programming has 
its biggest impact with learners with less advanced skills and lower confidence, or with groups of learners studying 
introductory courses in programming.

Although research shows that pair programming benefits all learners, there is some evidence that suggests that the 
technique has a greater impact on girls. In studies conducted on learners taking foundation programming courses in 
higher education, Werner et al.   reported a significant increase in confidence levels reported by the women who were 
paired, compared with the women who worked independently. Similar findings by Braught et al.   showed that women 
who worked alone were more frustrated than women who worked in pairs.

Whilst evidence shows that pair programming can benefit girls in terms of results and their perception of the subject, 
there is no evidence to suggest that it has a negative impact on boys. Hanks found that female students have more 
positive impressions of pair programming than their male counterparts, but the differences were not statistically 
significant.   Allowing female learners to work together might help maximise some of the benefits of this approach.

1. Sands, P. (2019) Addressing cognitive load in the computer science classroom. ACM Inroads. 10 (1), 44–51. Available from: doi.org/10.1145/3210577.

2. Hanks, B., Fitzgerald, S., McCauley, R., Murphy, L. & Zander, C. (2011) Pair programming in education: a literature review. Computer Science Education. 21 (2), 135–173.

3. Werner, L., Hanks, B. & McDowell, C. (2004) Pair-programming helps female computer science students. ACM Journal of Educational Resources in Computing. 4 (1). 
Available from: doi.org/10.1145/1060071.1060075.

4. Braught, G., Wahls, T. & Eby, L.M. (2011) The case for pair programming in the computer science classroom. ACM Transactions on Computing Education. 11 (2). 
Available from: doi.org/10.1145/1921607.1921609. 

5. Preston, D. (2005) Pair programming as a model of collaborative learning: a review of the research. Journal of Computing Sciences in Colleges. 20 (4), 39–45.

6. Werner, L. & Denning, J. (2009) Pair programming in middle school: What does it look like? Journal of Research on Technology in Education. 42 (1), 29–49.

1

2

3

4

2

1

5

5

6

http://the-cc.io/qr03_4
http://the-cc.io/qr03_5
http://the-cc.io/qr03_6
http://the-cc.io/qr03_7
http://the-cc.io/qr03_8
http://the-cc.io/qr03_9
http://the-cc.io/qr03_10



